Color blasting (part 3)

I recently played with median cut quantization. Like octree quantization, color space is viewed as a 3D space. But it uses a top-bottom approach. We start with a box containing all the image colors and then we split it into 2 smaller boxes along its longest side until the number of boxes is equal to the number of desired colors. The child boxes are then shrunk to enclose their color subset. Each color in the palette is then the mean of the colors contained in each box.
I used stl priority queue to store the boxes and get the box with the longest side. As each new box contains half of its parent color. The first subset contains all the colors where the component along the split axis is inferior to the median. And on the other hand, the second subset color component along the split axis are greater than the median. For this i use the nth_element function.
I should have used them for the octree quantization…
Talking about octree, i put all the image colors into one in order to easily map them to the palette.

The result is quite good with the sorcerian images.

Sorcerer images (median Cut 16 colors)

Here’s the RGB color wheel. The error is very important for low color count 🙁

RGB Color Wheel RGB Color Wheel (median cut 256 colors)
truecolor 256
RGB Color Wheel (median cut 128 colors) RGB Color Wheel (median cut 64 colors)
128 64
RGB Color Wheel (median cut 32 colors) RGB Color Wheel (median cut 16 colors)
32 16

I tried to solve this problem by spliting the box along the axis with the highest variance. But the result is not that great.

Sorcerer images (median Cut 16 colors variance)

Anyway! Grab the sources here.

Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

What is 13 + 2 ?
Please leave these two fields as-is:
IMPORTANT! To be able to proceed, you need to solve the following simple math (so we know that you are a human) :-)

This site uses Akismet to reduce spam. Learn how your comment data is processed.